Multiparameter quantum sensing with nanoscale resolution

Jörg Wrachtrup, 3rd Institute of Physics and Centre for Applied Quantum Physics, University Stuttgart, Stuttgart

Spin defects in wide band gap semiconductors enable quantum sensing with a spatial accuracy of a few nano meters. This leads to a variety of intriguing applications in material- as well as bio science. It turns out, that the sensor spin is sensitive to a number of external parameters and that dedicated Hamiltonian engineering renders the system sensitive to a particular quantity, like e.g. electric fields, temperature, pressure or magnetic fields [1]. The talk will demonstrate sensing of various quantities and discuss the enhancement of sensor performance using dedicated readout schemes [2,3] as well as quantum algorithms [4,5].

- [1] C.L. Degen, R. Reinhard, P. Cappelaro Rev. Mod. Phys. 89, 035002 (2017)
- [2] D.A. Hopper et al. Micromachines, 9, 437 (2018)
- [3] J.F. Barry et al. arXiv:1903.08176v1 (2019)
- [4] N. Aslam et al. Science 357, 67 (2017)
- [5] M. Pfender et al. Nature Com. 10, 594 (2019)